Home »
Blog »
Maths

How to Complete a Square.

How to complete a square.

In your journey of factorising quadratics, you will realise that some quadratic expressions are difficult to factorise using the normal method of multiplying two brackets. Take for example, \(x^2+x+1\). You will not be able to factorise this. This is where completing a square comes in.

Completing a square is a method where we add and subtract the square of half the coefficient of \(x\).

The technique of completing a square will be more beneficial to you when you take convert a quadratic from a standard form, \(y=ax^2+bx+c\), to

$${\small y= a (\, x+p )\,^{2}+q}$$

Simplifying an expression by completing a square.

To simplify an expression by completing a square, do the following

Example: Simplify the following expressions by completing a square.

\begin{gather*} \small i. y=x^2+x+1\\ \small ii. y=3x^2+7x-6 \end{gather*}

    Solutions

  1. \(a=1\), so there is no need to factor out.

    \begin{gather*} \small y=x^2+x+1\\ \small y= x^2 +x+ \left( \frac{1}{2} \times 1 \right) ^{2} - \left( \frac{1}{2} \times 1 \right) ^{2}+1 \\ \small y= x^2 + x+ \left( \frac{1}{2} \right) ^{2} - \left( \frac{1}{2} \right) ^{2}+1 \\ \small y= \left( x+ \frac{1}{2} \right) ^{2} - \left( \frac{1}{2} \right) ^{2}+1 \\ \small y= \left( x+ \frac{1}{2} \right) ^{2} + \frac{3}{4} \end{gather*}

    The perfect-square trinomial was \(x^2+x+(\frac{1}{2})^2\)

  2. \(a=3\), so we need to factor out by 3.

    \begin{gather*} \small y=3x^2+7x-6\\ \small y=3 \left( x^2 + \small \frac{7x}{3} - 2 \right) \\ \small y= 3 \left[ x^2 + \frac{7x}{3}+ \left( \frac{1}{2} \times \frac{7}{3} \right) ^{2} - \left( \frac{1}{2} \times \frac{7}{3} \right) ^{2}-2 \right] \\ \small y= 3 \left[ x^2 + \frac{7x}{3}+ \left( \frac{7}{6} \right) ^{2} - \left( \frac{7}{6} \right) ^{2}-2 \right] \\ \small y= 3 \left[ \left( x+ \frac{7}{6} \right) ^{2} - \left( \frac{7}{6} \right) ^{2}-2 \right] \\ \small y= 3 \left[ \left( x+ \frac{7}{6} \right) ^{2} - \frac{121}{36} \right]\\ \small y= 3 \left( x+ \frac{7}{6} \right) ^{2} - \frac{121}{12} \end{gather*}

Example: Simplify the following expressions by completing a square.

\begin{gather*} \small i. y=x^2+x+1\\ \small ii. y=3x^2+7x-6 \end{gather*}

    Solutions

  1. \(a=1\), so there is no need to factor out.

    \begin{gather*} \small y=x^2+x+1\\ \small y= x^2 +x+ \left( \frac{1}{2} \times 1 \right) ^{2} - \left( \frac{1}{2} \times 1 \right) ^{2}+1 \\ \small y= x^2 + x+ \left( \frac{1}{2} \right) ^{2} - \left( \frac{1}{2} \right) ^{2}+1 \\ \small y= \left( x+ \frac{1}{2} \right) ^{2} - \left( \frac{1}{2} \right) ^{2}+1 \\ \small y= \left( x+ \frac{1}{2} \right) ^{2} + \frac{3}{4} \end{gather*}

    The perfect-square trinomial was \(x^2+x+(\frac{1}{2})^2\)

  2. \(a=3\), so we need to factor out by 3.

    \begin{gather*} \small y=3x^2+7x-6\\ \small y=3 \left( x^2 + \frac{7x}{3} - 2 \right) \\ \small y= 3 \left[ x^2 + \frac{7x}{3}+ \left( \frac{1}{2} \times \frac{7}{3} \right) ^{2} - \left( \frac{1}{2} \times \frac{7}{3} \right) ^{2}-2 \right] \\ \small y= 3 \left[ x^2 + \frac{7x}{3}+ \left( \frac{7}{6} \right) ^{2} - \left( \frac{7}{6} \right) ^{2}-2 \right] \\ \small y= 3 \left[ \left( x+ \frac{7}{6} \right) ^{2} - \left( \frac{7}{6} \right) ^{2}-2 \right] \\ \small y= 3 \left[ \left( x+ \frac{7}{6} \right) ^{2} - \frac{121}{36} \right]\\ \small y= 3 \left( x+ \frac{7}{6} \right) ^{2} - \frac{121}{12} \end{gather*}

Example: Simplify the following expressions by completing a square.

\begin{gather*} \small i. y=x^2+x+1\\ \small ii. y=3x^2+7x-6 \end{gather*}

    Solutions

  1. \(a=1\), so there is no need to factor out.

    \begin{gather*} \small y=x^2+x+1\\ \small y= x^2 +x+ \left( \frac{1}{2} \times 1 \right) ^{2} - \left( \frac{1}{2} \times 1 \right) ^{2}+1 \\ \small y= x^2 + x+ \left( \frac{1}{2} \right) ^{2} - \left( \frac{1}{2} \right) ^{2}+1 \\ \small y= \left( x+ \frac{1}{2} \right) ^{2} - \left( \frac{1}{2} \right) ^{2}+1 \\ \small y= \left( x+ \frac{1}{2} \right) ^{2} + \frac{3}{4} \end{gather*}

    The perfect-square trinomial was \(x^2+x+(\frac{1}{2})^2\)

  2. \(a=3\), so we need to factor out by 3.

    \begin{multline*} \small y=3x^2+7x-6\\ \small y=3 \left( x^2 + \frac{7x}{3} - 2 \right) \\ \small y= 3 \left[ x^2 + \frac{7x}{3}+ \left( \frac{1}{2} \times \frac{7}{3} \right) ^{2}\\ - \left( \frac{1}{2} \times \frac{7}{3} \right) ^{2}-2 \right] \\ \small y= 3 \left[ x^2 + \frac{7x}{3}+ \left( \frac{7}{6} \right) ^{2} - \left( \frac{7}{6} \right) ^{2}-2 \right] \\ \small y= 3 \left[ \left( x+ \frac{7}{6} \right) ^{2} - \left( \frac{7}{6} \right) ^{2}-2 \right] \\ \small y= 3 \left[ \left( x+ \frac{7}{6} \right) ^{2} - \frac{121}{36} \right]\\ \small y= 3 \left( x+ \frac{7}{6} \right) ^{2} - \frac{121}{12} \end{multline*}

Solving for \(x\) by completing a square.

The procedure is a bit different when we solve for \(x\). However, we are almost doing the same things.

The method:

Example: Solve for \(x\) by completing a square.

\begin{gather*} \small i. x^2+x+1=0\\ \small ii. 3x^2+7x-6=0 \end{gather*}

    Solutions

  1. \(x^2+x+1=0\)

    \begin{gather*} \small x^2 +x+ \left( \frac{1}{2} \times 1 \right) ^{2} = \left( \frac{1}{2} \times 1 \right) ^{2}-1 \\ \small x^2 + x+ \left( \frac{1}{2} \right) ^{2} = \left( \frac{1}{2} \right) ^{2}-1 \\ \small \left( x+ \frac{1}{2} \right) ^{2} = - \frac{3}{4}\\ \small \sqrt{\left( x+ \frac{1}{2} \right) ^{2}} = \pm \sqrt{ \frac{-3}{4}}\\ \small x+ \frac{1}{2} = \pm \frac{{\sqrt{-3}}}{4}\\ \small x=- \frac{1}{2} \pm \frac{{\sqrt{-3}}}{4}\\ \small x = \frac{{-1 \pm \sqrt{-3}}}{4} \end{gather*}

    The solutions to this expression are non-real. This is beyond our scope.

  2. \(3x^2+7x-6=0\)

    \begin{gather*} \small 3x^2+7x=6\\ \small x^2+\frac{7}{3}{x}=2\\ \small x^2 + \frac{7x}{3}+ \left( \frac{1}{2} \times \frac{7}{3} \right) ^{2} = \left( \frac{1}{2} \times \frac{7}{3} \right) ^{2}+2\\ \small x^2 + \frac{7x}{3}+ \left( \frac{7}{6} \right) ^{2} = \left( \frac{7}{6} \right) ^{2}+2 \\ \small \left( x+ \frac{7}{6} \right) ^{2} = \frac{121}{36} \\ \small \sqrt{\left( x+ \frac{7}{6} \right) ^{2}} = \pm \sqrt{\frac{121}{36}}\\ \small x+ \frac{7}{6} = \pm \frac{11}{6} \\ \small x=- \frac{7}{6} \pm \frac{11}{6} \\ \small x= \frac{2}{3} \textrm{ or } x = -3 \end{gather*}

    Once you get used to this procedure, the steps can be shortened. Ours are long because we are trying to explain to you

To start extra classes with us, click here!!